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Hybridized discrete model for the anisotropic Kardar-Parisi-Zhang equation
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We discuss a hybridized discrete model for the anisotropic Kardar-Parisi-ZK&%) equation. We apply
a restricted solid-on-solid rule in one direction and a ballistic growth rule in the other direction such that the
model has anisotropic KPZ nonlinearities with opposite signs. The surface width of the model shows that it
belongs to the Edwards-Wilkinson class. The directional height-height correlation functions confirm that the
values of the dynamic exponent are independent of the directions even for the anisotropic case. The negative
exponents in higher dimensions are also discug&tD63-651%98)14806-1

PACS numbgs): 64.60.Ht, 68.35.Fx

Recently, the surface fluctuation of driven growth modelson-solid(RSOS model[7], and the Eden mod¢b] are gen-
has been intensively studied by using both the atomistierally described by the KPZ equation. For nonz&ran d
growth model and the continuum equatidi+-4]. Although =241, the equation is controlled by the strong coupling
many growth processes are controlled by diffusion, the Edefixed point where 8=0.24-0.25 anda=0.39-0.4 are
model [5], the ballistic deposition moddl6], and the re- known numerically[7,13]. While for A=0 it becomes the
stricted solid-on-solid modefl7] have a nonlinear growth Edward-Wilkinson (EW) equation [14], where a=(3
process that is related to a variety of other different systems-d)/2, 8= (3—d)/4, andz=2. Ind=2+ 1, W? grows loga-
such as directed polymer in a random poterjBa) Burgers's  rithmically as a function of time. Later, Wolf considered an
equation[9], randomly stirred fluidd10] and the Kardar- anisotropic KPZ (AKPZ) equation to study the surface
Parisi-Zhang KPZ) equation[11]. growth on a vicinal substrafel5], where the parallel direc-

One of the important quantities in the kinetic rougheningtion and the perpendicular direction to the vicinal direction
of growing surfaces is the surface widil, the root-mean- are treated differently due to the broken rotational symmetry.
square fluctuation of the surface height This kind of anisotropic equation can be applied to various
other problems such as ion-sputtered surface grdde.
One can write the AKPZ equation

1 o 1/2
W(L,t)E<E§ [h(x,t)—h(t)]2> : (1)
ah(x,t)

whereh(x,t) is the height of sites at timet. L, h(t), andd, at
denote the lateral size of the substrate, the mean height at 3)
time t, and the substrate dimensigthe total dimensiord

=ds+1), respectively. Her¢ ) stands for the sample aver- \ herey | (V)) denotes the gradient along the perpendicular
age. The surfgce width .charactenzes trle roughness of th(BaraIIe) direction[15]. If v, =y and\, =\, Eq. (3) re-
interface showing a scaling behaviaf~L“f(t/L?), where  §,ces to the isotropic KPZ equation. Using the dynamic
the scaling functionf(x) approaches a constant fa&>1,  renormalization groufRG) method, Wolf has found that
and f(x)~x? for x<1 with z=a/$ [12]. The exponents \yhen the coefficients of the nonlinear terms have equal
@, B, andz are called the roughness, the growth, and thejgns, the physical properties of the interface are the same as
dynamic exponent, respectively. _ _ those of the isotropic KPZ equation so there is algebraic
One_ of the well studleq nonlinear equations descnblng_ &oughness. However, when they have opposite signs, the
dynamic growth process is the Kardar-Parisi-Zhang equatiofgnlinear terms become irrelevant, and the fixed point is de-
[11] scribed by the linear EW equation. Also, this remains true
\ when one of the coefficients of the nonlinear terms vanishes.
_ 2 o 2 The effects of the anisotropy in three dimensions are studied
PVIh(x,D+ 2 [VhOOI (%0 @ by both the direct integration of AKPZ equatiph7] and the
simulations of stochastic lattice model$8,19. Barabai
where 7 is an uncorrelated random noise with strenBth et al.[18] have studied a three-dimensional Toom model that
The ballistic depositioiBD) model[6], the restricted solid- can be described by the AKPZ equation with different am-
plitudes ofA ; and\ | but having the same signs. Jeagtgal.
[19] have introduced a modified Toom maodel, which is also
*Corresponding author. Electronic address: imkim@kuccnx.described by the AKPZ equation with different signs of the
korea.ac.kr nonlinearities.

A A
= v, V2h+y Vih+ S (V. )2+ §H(V”h)2+ -

Jh(x,t)
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FIG. 1. The semilogarithmic plots &f/(L,t) vs Int for N=1, FIG. 2. Gy(2r,t)—Gy(r;,t) as a function ofr;/(t) with

2,3,5,7, with the system sid?=512x512, t=3000 and 30, in-  &(t)~t"* andz=2 for t=32,64,128,256,512 and’=512x512.
dependent sample average for the model. The inset shows the sentin€ inset shows the plots @, (2r, ,t)—G,(r, ,t) as a function
log plot of WA(L) vs L with L=32,48,64,80,96 at the saturated Of r, /&, (t) with & (t)~t"* andz=2.
regime.

’ tion) such that h(x,y,t+1)=max{h(x,y—1t),h(x,y,t)

In this paper, we make a composite discrete model tot Lh(X,y+1t)] where max takes the maximum value. If
investigate the effect of the anisotropy in the KPZ equationthe surface configuration does not satisfy the condit®a.
Our stochastic discrete model is quite different from those if4)] in the x direction, in other words, if the height of the
the previous work$18,19. We are concerned with the an- Selected site exceeds the heights of the nearest neighbor sites
isotropy of the surface morphology, i.e., the ansiotropy genby N, the dropped particle is rejected. We call the growth
erated from two different deposition rules. th=2+1, by  rule, Eq. (4), a generalized restricted solid-on-solid
applying the BD growth rule in one direction and modified (GRSOS rule. If we apply the GRSOS rule starting from a
RSOS growth rule in the other directiony and\, of the flat surface in the one-dimensional substrate, the surface con-
model can have opposite signs. The width increases logaritffiguration satisfies the RSOS condition which allows only
mically as a function of time showing EW type behaviors. |[h(x+1t)—h(x,t)|=0,1,... N between the nearest neigh-
We extend our model for the case of higher dimensions an0r sites. However, due to the combined growth rules, the
measure the negative values of the exponents. Such an efeveloped surface configuration in our model may have the
tension in the model is easy and natural compared with théase|h(x,y,t) —h(x+1y,t)|>N, which breaks the restric-
Toom models used before. Another advantage of our moddion on the nearest neighbor height differences in the parallel
is that both the signs and the values of the nonlinearitieglirection. It is a hybridized model combining both GRSOS
(\j,\,) can be controlled by modifying the growth rules. and BD rules. _ . o
We also measure the correlation functions for both directions Our simulations are carried out starting from a flat initial
and findz=2 to be independent of the directions. condition forN=1,2,3,5,7 with a periodic boundary condi-

Consider a deposition from the top to the bottom of thetion in d=2+1. We have plotted the surface widi as a
two dimensional substrate starting from initially flat surface.function of the logarithmic time for various values Nfin
Select a site X,y) randomly. If the surface configuration Fig. 1 and the surface widW as the function of logarithmic

satisfies the condition system size in the inset. Our numerical results agree with
those of the EW universality class thA€~Int at early time
h(x,y,t)<h(x=1y,t)+N 4) for various values ofN, and W>~InL at the saturated re-

gime. We also extend our model in order to confirm the EW
at timet in the x direction (parallel direction whereN is a  behavior in higher dimensions. th=3+1 andd=4+1, we
preassigned positive integer, then we apply the ballistiapply the modified RSOS rule in one direction and the BD
deposition rule in they direction (perpendicular direc- rule in the other directions. Then the model has negatiire
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one direction and positivk in the other directions. From the
RG calculation[19], one would expect EW behaviors with
a=(3—-d)/2. Ind>3, the EW equation shows/?(L)~c, 1.85-
—c,L2* wherec, andc; are positive constants. Sineeis
negative, we need many sample averages to see the corre
tion to ¢y. As shown in Fig. 2 we have plotted the square of | .
the surface widttW?(L) as a function of 1/ in 3+1 dimen- & 207/
sions and 1/? in 4+1 dimensiong20]. The straight guide =
lines represent that=— 3 in 3+1 dimensions andv=—1
in 4+1 dimensions, which are the expected valuesyah
the EW equation. Ird=4+1, we also apply the modified
RSOS rule in two directions and the BD rule in the other two —J°
directions and obtain the same results withks —1. So the
growth model in higher dimensions also follows the AKPZ g
equation and our data support the RG results of Jexbrad.
[19] that even ind=4 and 5, the AKPZ equation with op- 1.754
posite signs of the nonlinear terms belongs to the EW clas:
for no space correlated noise.

Hence using the hybridized model combining both
GRSOS and BD rules we are able to generate the anisotrop
in the growth process, and as a result, the EW behavior ha
been found. Therefore it is expected that the signs of the 1.704
nonlinear terms in the model are opposite. We then monitor
the average growth velocity; andv, as a function of slope T ' J ' J ' J '
m, which is the slope of the tilted surface to find the coeffi- 0.00 0.04 0.08 0.12 0.16
cients of the nonlinear termi21]. By measuring the average
growth velocityv, we can obtain the value of through the

208+

1.804

0.004 0.008
112

relation v (m)~v(0)+ (\/2)m?. Thus, A\ can be obtained 1/L
from the relation\ = (¢°v/9m?). We use a helical boundary _
condition h(x=L,t)=h(x,t) =mL with initial vicinal sur- FIG. 3. The plots ofW?(L) vs 1L with N=1 and L®

face of slopem. We have measured in the parallel and the =8°.16°,32,64 at the zsaturated reg”zne id=3+1. The i“Sft
perpendicular directions and obtained=—0.61-0.22, Shows the plots of Wi(L,t) vs IL" with N=1 and L
~0.11,-0.04-0.02 (\, =0.22,0.21,0.23,0.25,0.31) foN  —8"16.3Z at the saturated regime th=4+1.

=1,2, 3,5 and 7, respectively. These results support thajs r /¢ for t=32,64,128,256,512. The data are collapsed
the model fOllOWS the AKPZ equation W|th different SignS Of precise'y onto a curve W|th= 2 for both Corre'ation func-

A and A, . Also the logarithmic behavior of the surface tions, supporting that the two correlation lengths character-
width for the various values o confirms that the model izing the morphology of the anisotropic surface follow the
belongs to the EW class for various values Xf/A, =  same power law. If an anisotropy expongnis defined as
—2.9,-1.05-0.52,-0.16,-0.06. Hence if the values of the &~ &, then our data support that=1 and§H~§L~t1’2.
coefficients of nonlinear terms have opposite signs, the ef-" |n summary, we introduce a discrete growth model by
fective coupling constantg( =DA?/»?) flows to zero as  hybridizing both the ballistic deposition rules in ong )(

shown by the RG calculatiofi5]. direction and the modified RSOS rules in the otHgrdirec-
In addition to the surface width, we have calculated thetion. The former rule allows vacancies in a tilted surface
height-height correlation function defined by effectively generating positive, but the latter rule has more
rejection rates in a tilted surface producing negatye So
G(r,t)=([h(x+r,t)—h(x,1)]?)y. (5) the model has opposite signs of the nonlinearities and the

square of surface width grows logarithmically with time for
various values of the nonlinearities th=2+1. We have
also introduced the generalized modelsdis3+1 andd
=4+1, and have measured the negative valuesr afuc-
cessfully. These results completely confirm the EW behavior
of our model. As an advantage of the model, the strength of
?)\H/M) is controlled by adjusting the restriction parameter
N and all results are consistent with the EW class. The mea-

| or 1 andr ; is the distance in5 direction. In 2+-1 dimen- g, oment of the height-height correlation functions is also
sions,G(r,t) of the EW class has the for@ln[rf (r/&(t))] carried out to show that boty and ¢, scales asl? with z
where A is a constan{22]. To get the data collapse, we -2

monitor G(2r,t)—G(r,t), which should

be AIn2+Ag[r/&(t)]  with  g[r/&(t)]=Inf(2r/&(t)) This work was supported in part by the Ministry of Edu-
—Inf(r/é(t)). As shown in Fig. 3 we have plotted cation (Grant No. BSRI-97-2409and the KOSEF through
Gy(2r,t) =Gy(r,t) vsry ItY2 and G, (2r, ,t)— G, (r,,t) the SRC program of SNU-CTP.

The correlation function follows a scaling forr®s(r,t)
~r2ef(r/¢(t)) where r=|r|, the correlation length&(t)
~12 and the scaling functiofi(y) approaches constant for
y<1 andf(y)~y~ 2% for y>1. To calculate the correlation
functions of the parallel and the perpendicular directions, w
define G 5(r,t) =([h(x+r 5t) —h(x,t)]®), where § is either
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