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Hybridized discrete model for the anisotropic Kardar-Parisi-Zhang equation
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We discuss a hybridized discrete model for the anisotropic Kardar-Parisi-Zhang~KPZ! equation. We apply
a restricted solid-on-solid rule in one direction and a ballistic growth rule in the other direction such that the
model has anisotropic KPZ nonlinearities with opposite signs. The surface width of the model shows that it
belongs to the Edwards-Wilkinson class. The directional height-height correlation functions confirm that the
values of the dynamic exponent are independent of the directions even for the anisotropic case. The negative
exponents in higher dimensions are also discussed.@S1063-651X~98!14806-7#

PACS number~s!: 64.60.Ht, 68.35.Fx
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Recently, the surface fluctuation of driven growth mod
has been intensively studied by using both the atomi
growth model and the continuum equation@1–4#. Although
many growth processes are controlled by diffusion, the E
model @5#, the ballistic deposition model@6#, and the re-
stricted solid-on-solid model@7# have a nonlinear growth
process that is related to a variety of other different syste
such as directed polymer in a random potential@8#, Burgers’s
equation@9#, randomly stirred fluids@10# and the Kardar-
Parisi-Zhang~KPZ! equation@11#.

One of the important quantities in the kinetic rougheni
of growing surfaces is the surface widthW, the root-mean-
square fluctuation of the surface height

W~L,t ![K 1

Lds
(

x
@h~x,t !2h̄~ t !#2L 1/2

, ~1!

whereh(x,t) is the height of sitex at timet. L, h̄(t), andds
denote the lateral size of the substrate, the mean heig
time t, and the substrate dimension~the total dimensiond
5ds11), respectively. Herê & stands for the sample ave
age. The surface width characterizes the roughness of
interface showing a scaling behaviorW;La f (t/Lz), where
the scaling functionf (x) approaches a constant forx@1,
and f (x);xb for x!1 with z5a/b @12#. The exponents
a, b, and z are called the roughness, the growth, and
dynamic exponent, respectively.

One of the well studied nonlinear equations describin
dynamic growth process is the Kardar-Parisi-Zhang equa
@11#

]h~x,t !

]t
5n¹2h~x,t !1

l

2
@¹h~x,t !#21h~x,t ! ~2!

whereh is an uncorrelated random noise with strengthD.
The ballistic deposition~BD! model@6#, the restricted solid-
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on-solid~RSOS! model@7#, and the Eden model@5# are gen-
erally described by the KPZ equation. For nonzerol, in d
5211, the equation is controlled by the strong coupli
fixed point where b50.24–0.25 anda50.39–0.4 are
known numerically@7,13#. While for l50 it becomes the
Edward-Wilkinson ~EW! equation @14#, where a5(3
2d)/2, b5(32d)/4, andz52. In d5211, W2 grows loga-
rithmically as a function of time. Later, Wolf considered a
anisotropic KPZ ~AKPZ! equation to study the surfac
growth on a vicinal substrate@15#, where the parallel direc-
tion and the perpendicular direction to the vicinal directi
are treated differently due to the broken rotational symme
This kind of anisotropic equation can be applied to vario
other problems such as ion-sputtered surface growth@16#.
One can write the AKPZ equation

]h~x,t !

]t
5n'¹'

2 h1n i¹ i
2h1

l'

2
~¹'h!21

l i

2
~¹ ih!21h,

~3!

where¹' (¹ i) denotes the gradient along the perpendicu
~parallel! direction @15#. If n'5n i and l'5l i , Eq. ~3! re-
duces to the isotropic KPZ equation. Using the dynam
renormalization group~RG! method, Wolf has found tha
when the coefficients of the nonlinear terms have eq
signs, the physical properties of the interface are the sam
those of the isotropic KPZ equation so there is algebr
roughness. However, when they have opposite signs,
nonlinear terms become irrelevant, and the fixed point is
scribed by the linear EW equation. Also, this remains tr
when one of the coefficients of the nonlinear terms vanish
The effects of the anisotropy in three dimensions are stud
by both the direct integration of AKPZ equation@17# and the
simulations of stochastic lattice models@18,19#. Baraba´si
et al. @18# have studied a three-dimensional Toom model t
can be described by the AKPZ equation with different a
plitudes ofl' andl i but having the same signs. Jeonget al.
@19# have introduced a modified Toom model, which is al
described by the AKPZ equation with different signs of t
nonlinearities.
.
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In this paper, we make a composite discrete mode
investigate the effect of the anisotropy in the KPZ equati
Our stochastic discrete model is quite different from those
the previous works@18,19#. We are concerned with the an
isotropy of the surface morphology, i.e., the ansiotropy g
erated from two different deposition rules. Ind5211, by
applying the BD growth rule in one direction and modifie
RSOS growth rule in the other direction,l i and l' of the
model can have opposite signs. The width increases loga
mically as a function of timet showing EW type behaviors
We extend our model for the case of higher dimensions
measure the negative values of the exponents. Such an
tension in the model is easy and natural compared with
Toom models used before. Another advantage of our mo
is that both the signs and the values of the nonlineari
(l i ,l') can be controlled by modifying the growth rule
We also measure the correlation functions for both directi
and findz52 to be independent of the directions.

Consider a deposition from the top to the bottom of t
two dimensional substrate starting from initially flat surfac
Select a site (x,y) randomly. If the surface configuratio
satisfies the condition

h~x,y,t !,h~x61,y,t !1N ~4!

at time t in the x direction ~parallel direction! whereN is a
preassigned positive integer, then we apply the balli
deposition rule in they direction ~perpendicular direc-

FIG. 1. The semilogarithmic plots ofW2(L,t) vs lnt for N51,
2,3,5,7, with the system sizeL255123512, t53000 and 30, in-
dependent sample average for the model. The inset shows the
log plot of W2(L) vs L with L532,48,64,80,96 at the saturate
regime.
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tion! such that h(x,y,t11)5max@h(x,y21,t),h(x,y,t)
11,h(x,y11,t)# where max takes the maximum value.
the surface configuration does not satisfy the condition@Eq.
~4!# in the x direction, in other words, if the height of th
selected site exceeds the heights of the nearest neighbor
by N, the dropped particle is rejected. We call the grow
rule, Eq. ~4!, a generalized restricted solid-on-sol
~GRSOS! rule. If we apply the GRSOS rule starting from
flat surface in the one-dimensional substrate, the surface
figuration satisfies the RSOS condition which allows on
uh(x11,t)2h(x,t)u50,1, . . . ,N between the nearest neigh
bor sites. However, due to the combined growth rules,
developed surface configuration in our model may have
caseuh(x,y,t)2h(x11,y,t)u.N, which breaks the restric
tion on the nearest neighbor height differences in the para
direction. It is a hybridized model combining both GRSO
and BD rules.

Our simulations are carried out starting from a flat init
condition for N51,2,3,5,7 with a periodic boundary cond
tion in d5211. We have plotted the surface widthW as a
function of the logarithmic time for various values ofN in
Fig. 1 and the surface widthW as the function of logarithmic
system size in the inset. Our numerical results agree w
those of the EW universality class thatW2; lnt at early time
for various values ofN, and W2; lnL at the saturated re
gime. We also extend our model in order to confirm the E
behavior in higher dimensions. Ind5311 andd5411, we
apply the modified RSOS rule in one direction and the B
rule in the other directions. Then the model has negativel in

mi-

FIG. 2. Gi(2r i ,t)2Gi(r i ,t) as a function ofr i /j i(t) with
j i(t);t1/z and z52 for t532,64,128,256,512 andL255123512.
The inset shows the plots ofG'(2r' ,t)2G'(r' ,t) as a function
of r' /j'(t) with j'(t);t1/z andz52.
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one direction and positivel in the other directions. From th
RG calculation@19#, one would expect EW behaviors wit
a5(32d)/2. In d.3, the EW equation showsW2(L)'c0
2c1L2a wherec0 andc1 are positive constants. Sincea is
negative, we need many sample averages to see the co
tion to c0. As shown in Fig. 2 we have plotted the square
the surface widthW2(L) as a function of 1/L in 311 dimen-
sions and 1/L2 in 411 dimensions@20#. The straight guide
lines represent thata52 1

2 in 311 dimensions anda521
in 411 dimensions, which are the expected values ofa in
the EW equation. Ind5411, we also apply the modified
RSOS rule in two directions and the BD rule in the other t
directions and obtain the same results witha521. So the
growth model in higher dimensions also follows the AKP
equation and our data support the RG results of Jeonget al.
@19# that even ind54 and 5, the AKPZ equation with op
posite signs of the nonlinear terms belongs to the EW c
for no space correlated noise.

Hence using the hybridized model combining bo
GRSOS and BD rules we are able to generate the anisot
in the growth process, and as a result, the EW behavior
been found. Therefore it is expected that the signs of
nonlinear terms in the model are opposite. We then mon
the average growth velocityv i andv' as a function of slope
m, which is the slope of the tilted surface to find the coe
cients of the nonlinear terms@21#. By measuring the averag
growth velocityv, we can obtain the value ofl through the
relation v(m)'v(0)1(l/2)m2. Thus, l can be obtained
from the relationl5(]2v/]m2). We use a helical boundar
condition h(x6L,t)5h(x,t)6mL with initial vicinal sur-
face of slopem. We have measuredv in the parallel and the
perpendicular directions and obtainedl i520.61,20.22,
20.11,20.04,20.02 (l'50.22,0.21,0.23,0.25,0.31) forN
51, 2, 3, 5, and 7, respectively. These results support
the model follows the AKPZ equation with different signs
l i and l' . Also the logarithmic behavior of the surfac
width for the various values ofN confirms that the mode
belongs to the EW class for various values ofl i /l'5
22.9,21.05,20.52,20.16,20.06. Hence if the values of th
coefficients of nonlinear terms have opposite signs, the
fective coupling constant (g'5Dl'

2 /n'
3 ) flows to zero as

shown by the RG calculation@15#.
In addition to the surface width, we have calculated

height-height correlation function defined by

G~r ,t !5^@h~x1r ,t !2h~x,t !#2&x . ~5!

The correlation function follows a scaling formG(r ,t)
;r 2a f „r /j(t)… where r 5ur z, the correlation lengthj(t)
;t1/z, and the scaling functionf (y) approaches constant fo
y!1 and f (y);y22a for y@1. To calculate the correlation
functions of the parallel and the perpendicular directions,
defineGd(r ,t)5^@h(x1rd,t)2h(x,t)#2&x whered is either
i or ' and r d is the distance ind direction. In 211 dimen-
sions,G(r ,t) of the EW class has the formAln@r f „r /j(t)…#
where A is a constant@22#. To get the data collapse, w
monitor G(2r ,t)2G(r ,t), which should
be Aln21Ag@r /j(t)# with g@r /j(t)#5 lnf „2r /j(t)…
2 lnf „r /j(t)…. As shown in Fig. 3 we have plotte
Gi(2r i ,t)2Gi(r i ,t) vs r i /t1/z and G'(2r' ,t)2G'(r',t)
ec-
f

ss

py
as
e
r

-

at

f-

e

e

vs r' /t1/z for t532,64,128,256,512. The data are collaps
precisely onto a curve withz52 for both correlation func-
tions, supporting that the two correlation lengths charac
izing the morphology of the anisotropic surface follow th
same power law. If an anisotropy exponentx is defined as
j i;j'

x , then our data support thatx51 andj i;j';t1/2.
In summary, we introduce a discrete growth model

hybridizing both the ballistic deposition rules in one (')
direction and the modified RSOS rules in the other (i) direc-
tion. The former rule allows vacancies in a tilted surfa
effectively generating positivel' but the latter rule has more
rejection rates in a tilted surface producing negativel i . So
the model has opposite signs of the nonlinearities and
square of surface width grows logarithmically with time f
various values of the nonlinearities ind5211. We have
also introduced the generalized models ind5311 and d
5411, and have measured the negative values ofa suc-
cessfully. These results completely confirm the EW behav
of our model. As an advantage of the model, the strength
(l i /l') is controlled by adjusting the restriction parame
N and all results are consistent with the EW class. The m
surement of the height-height correlation functions is a
carried out to show that bothj i andj' scales ast1/z with z
52.

This work was supported in part by the Ministry of Ed
cation ~Grant No. BSRI-97-2409! and the KOSEF through
the SRC program of SNU-CTP.

FIG. 3. The plots of W2(L) vs 1/L with N51 and L3

583,163,323,643 at the saturated regime ind5311. The inset
shows the plots of W2(L,t) vs 1/L2 with N51 and L4

584,164,324 at the saturated regime ind5411.
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